标签 数学 下的文章

实数到底有多少个?

 

关注微信: DuoDaaMath 每天获得更多数学趣文

新浪微博: http://weibo.com/duodaa

 

原文作者:Keith Devlin, 英国数学家和科普作家,斯坦福大学教授

翻译: 哆嗒数学网, www.duodaa.com

 

实数有多少个呢?一种回答是:“无穷多个”。由于康托证明了实直线--即连续统--不能和自然数有一一对应,于是能得到更好一些的回答是,“不可数多个”。但我们能更精确一些吗?康托引进了一种度量无穷集合个数的方法:使用阿列夫数。阿列夫是一个希伯来字母,康托用它来表示无限集合的个数(阿列夫“ℵ”这个号很多时候在网页上都打不出来)。他把所有的无限集合的个数都用这样的无限数量(基数)进行了分层,ℵ0(第一个无穷基数,自然数集的数量),ℵ1(第一个不可数基数),ℵ2,等等。

 

无穷基数和有限的自然数一样,可以做加法和乘法,只是比自然数的加法和乘法容易得多。两个无穷基数相乘或者相加,都等于这两个中最大的那个。

 

我们也能把任何一个有限或无限的基数来计算它的幂。这样问题瞬间变得不那么容易了。我们来看一个相对最简单的情况,如果κ(西腊字母,Kappa)是一个无穷基数,那么2^κ(2的κ次幂,即κ基数集合的幂集的基数)的值是多少?康托证明了这个幂一定比κ本身大,但这也就是他得到的最深的结果了。特别的,他无法表明2^ℵ0是否等于ℵ1。

 

这个问题有何意义呢?在数学其它地方,已经证明了2^ℵ0正好是连续统的个数,即实数的个数。由于康托能证明有理数的大小是ℵ0,那接下来一个自然的问题,实数到底有多少个?这样的问题不能回答是让人沮丧的。希尔伯特也在1900年,把它列入了他《数学问题》中的23个问题之一。

 

命题2^ℵ0=ℵ1的就是著名的连续统假设。它和选用的构造无限集合的公理体系密切相关。这个公理体系是由策梅罗和弗兰克尔在20世纪初建立的,叫做ZF公理体系,是被数学界普遍接受的。1936年,哥德尔用他的证明震惊了数学界。他证明了ZF公理体系是不能证明连续统假设是一个假命题的。

 

其实,部分逻辑学家、一些实分析学家,以及大部分数学家并不关心连续统假设是真是假。所以,让人震惊的并不是这个结果本身。让大家惊奇的是,哥德尔发现了一种证明手段,可以证明一些数学命题是不能被证明的。(注意,哥德尔证明的是连续统假设不可能在ZF公理体系下被证明是假的,但这并不意味着连续统假设可以在这个体系下被证明是真的。他没有一个证明它是真命题的逻辑推导。)于是,大家知道了连续统假设不可能被证明是假命题,研究转向去证明它是真命题。但这样的研究是徒劳的,1963年科恩的证明告诉了大家,为什么之前的研究是徒劳的。科恩用他发明的力迫法证明了连续统假设也不可能被证明是真命题(在ZF公理体系的框架下)。于是这个假设是不可判定的。因为这个发现,科恩还在1966年获得菲尔兹奖。

 

当然,一个很自然的想法。我们想在ZF公理体系下增加一些公理,让连续统假设变得可以判定是真是假。的确有很多数学家做了这样的工作,但都没有成功。问题在于,我们试图为所有的数学分支提供一个统一的集合论的基础框架(这个框架包含算术系统),框架中的公理要被大家接受,还必须看上去是“显然的”。没人能找到这样的公理。有一种我个人觉得很吸引人的公理叫做构造性公理(我博士期间是研究集合论和无穷基数算术的,我研究生涯的前15年都在搞那个)。

 

这个公理是哥德尔发现的。哥德尔用它来证明了连续统假设在ZF公理体系下不是假命题。虽然哥德尔不建议让它成为一个集合论的公理,但我觉得它还是比较“自然”,能成为一条公理。不是因为我相信那个是“真”的。当我们在无限集合上讨论数学时,我认为不应该较真公理的对错。甚至,我觉得科恩的结果(以及很多之后的结果)向我们表明的原始信息应该是:我们在选择集合论的公理时,应该务实一点。由于集合论的终极目的是为数学提供一个普遍的根基,我可以提出(事实上在1977年我已经提出过)一个非常好的支持将构造公理纳入公理体系的论点。(我把这个观点写进了我的专著《The Axiom of Constructibity: A Guide for the Mathematician》,于1977年在Springer-Verlag出版。) 如果构造性公理被假定成立(作为一条新的公理,加到ZF公理体系里),就可以证明连续统假设是真命题。由于各种原因,很多数学家不支持我以及其他支持构造公理体系的人的观点。但没有一个人提出一个我认为令人信服的反对理由。至少,在那个时候没有。

 

1986年,情况发生了改变。Freiling在《Journal of Symbolic Logic》上发表了一个有趣的文章,题目叫《公理的对称性:往实直线上投飞标》。在文章中,Freiling提出了下面这个假想实验。你我两人向一个飞标靶子投掷飞标。我们之间隔了一个屏风,所以我们之间互不影响。当我们收到一个来自第三方的信号的时候,我们一起向靶子投掷飞镖。我们投掷的结果完全是随机的。(形式上,由于靶子上的点可和实数产生一一对应,所以我们两个人可以简单的看成两个独立的随机数发生器。)那谁是赢家呢?恩,实验的组织者把所有实数排成一个良序(即把靶子上的点排成良序),记为“<<”。我们的目标是在这个良序下,击中的目标比对手大。如果你击中的实数是Y,而我击中的M,若Y<<M,就我赢,否则,你赢。

 

好的,再多说几句。假如连续统假设成立。实验的组织者可以把这个良序排成这样:对任意实数x,集合{r|r<<x}是可数的。同意吗?好,由于我们是独立投掷的,我可以假设我第一个投,我击中了M。现你轮到你投了,由于{r|r<M}是可数的,所以如果你击中的是Y,那么Y<<M的概率是1,即你赢的概率是1。但,我们的条件是完全对称的,所以相似讨论,我赢的概率也应该是1.但这是不可能的。结论:我们不到找到这样的良序,所以连续统假设是假命题。

 

是吧?别急,别太武断。要让上面的推理成立,我们假设了良序“<<”是可测的。但没有任何理由支持这个假设。所以,我们并没有证明连续统假设是一个假命题。但我们(或者Freiling)也不是要证明他是假命题。相反,我们是在找一些似是而非的理由,来找一个公理集合论体系来解决连续统假设。如果,你们公理集合集结看成一个构造集合的框架,这个框架为数学其它所有分支都提供一个构造集合的保守方法,那么,你可以用构造性公理。这时,连续统假设成立。但是,如果你认为数学是现实经验的抽象,且你认为Freiling的投标假想实验是直观、自然且“应该是对的”,那么你能承认的集合论中的公理就得让连续统假设是一个假命题。(或者,退一万步来讲,你的公理体系不能让连续统假设是真命题。)那我现在是观点是什么呢?恩,我还是在考虑一个支持构造性公理的论点。但我也发现Freiling的假想实难是宁人信服的。

 

所以,我的观点是,从直观的层面上考虑,肯定要让连续统假设是一个假命题。当一个数学家发现他在支持两个互相矛盾的命题的时候,他显然是当系主任或者院长太长时间了。是时候放弃职位而继续前进了。你知道吗?我这样做了。请注意我的联系地址已经变了。

 

 

关注微信: DuoDaaMath 每天获得更多数学趣文

新浪微博: http://weibo.com/duodaa

柯西函数方程和选择公理

柯西函数方程的问题,就是问如果一个实函数f(x),对任意实数x,y都满足f(x+y)=f(x)+f(y)。那么这样的函数是什么?
 
 
有些人马上会不假思索的回答,这是一个线性函数,而且是一条过原点的直线,f(x)=ax, 其中a=f(1)。如果多问一句为什么,他们之中也会很熟练的给出“证明”, 但你会发现,他们会自然而不自然的用到下面的条件。
 
 
条件1:  f(x)是连续函数
条件2:  f(x)是可导函数
条件3:  f(x)在个别点是连续
条件4:f(x)在某个区间上有界
条件5:f(x)在(在某个区间)单调
 
没有这上面的条件,这些同学就很难证下去了。
 
 
的确是这样,其实对于满足这样条件的函数来讲,前文说的5个条件都是等价的。实际上有朋友列出了更多的等价情形,这里我就不再多讲,大家自己去找贴子吧。我这里再说一个重要的等价条件,关于可测的(可测是专业词汇,不懂没关系不是重点)。
 
 
条件6: f(x)是一个勒贝格可测函数。
 
 
啊,有人可能会没有耐心了:“废话那么多,你倒给个不连续的例子呀!”
 
 
咳咳!我还要继续多几句废话。这个例子,可以说能给,也可以说不能给。因为这和数学中的一条公理有关系——选择公理。在数学里选择公理是一条非常神奇的公理,它的大意是说如果有很多集合(可能有无穷多个),每个集合里都有东西(即非空),那么我可以从每个集合论抓取一个元素组成新的集合。
 
这似乎是一条看似显然应该成立的公理。你会说随便抓啊!我会问怎么个随便法?你会再强调,随便就是随便啊!我再问,有多随便?实际上,这个公理导出的一些推论让一些人“三观尽毁”!我们之所以觉得应该是真的,是因为大部分人会把有限世界的经验和感觉直接移植到无穷世界,这有事时候会出问题。
 
选择公理能做出一种看似违反物理定律的操作(巴拿赫-塔尔斯基悖论),一个皮球,切上几刀,把切好的碎片重新拼接组合,最终能拼接处和之前大小一模一样的两个皮球。另外,选择公理能把任何集合排成良序——一种其中任意元素都可比较大小且任何子集都有最小值顺序。这让我想起我在一本集合论的专业教材上,书的作者幽默留下字句:“Show me the well-ordering on R, somebody cry!”(有人会叫嚣,你把实数的一个良序写出来给我瞅瞅!)。是的,是的,我写不出来,也没有人类能写出来。
 
罗素对选择公理有个有意思的比喻:“如果有无穷多双鞋,我可以告诉你都选左脚的那只;但如果是无穷双袜子,我们应该怎么选呢?”
 
尽管有一些反直觉的推论,绝大部分数学家还是相信选择公理是真的。
 
选择公理在线性空间理论里能得到一个很强大的结论——任何线性空间都有基,有的书还特别强调是代数意义下的基,叫做Hamel基。
 
我们来回顾一些线性代数的知识。数域F上线性空间的基,是这样一个集合B。对空间中的任何一个元素r,我们都可以从B中找到有限个元素b(1),b(2),...,b(n), 和相同数量的数域F中非零的元素f(1),f(2),...,f(n),r能写成r=f(1)b(1)+f(2)b(2)+f(n)b(n)。而且这种写法还是唯一的。(这和你手里的线性代数书的表述可能不一样,但是你不用怀疑表述的等价性)
 
上诉B中元素的个数,叫做这个线性空间的维数。
 
我们还知道,一个空间是多少维的和我们把他看成哪个数域上的空间有关系。比如复数,如果看到复数域上的线性空间就是一维的,任何一个非零单点集合都是这个空间的基,而在实数域上看是二维的,{1,i}是一组基。
     
 
于是我问,如果把实数集合看成有理数域上的线性空间,那么这个空间有基吗? 选择公理说,有!那基长什么样,选择公理说,不告诉你!——但我们可以肯定这个基有无穷多的元素,这个空间是无限维的。但无论怎么样,也没有人能把这个基很清楚的呈现出来。但有了这个基,我们就能造出不连续的例子了。
 
对于任何一个实数r,我们都可以从这个基中找到有限个元素b(1),b(2),...,b(n), 和相同数量的非零有理数q(1),q(2),...,q(n),最终把r写成r=q(1)b(1)+q(2)b(2)+q(n)b(n)。而且这种写法是唯一的。
 
现在我们来“构造”函数了。我们在这个基中定位一个具体的元素t,那么对于某个实数x,他写成的样子有可能是x=q·t+q(1)b(1)+q(2)b(2)+q(n)b(n),就是t前面有个有理数系数q。也有可能写成的结果里,根本没有t。那么前者情况,我们令f(x)=q, 后一种情况我们令f(x)=0。因为表示方式是唯一的,你可以验证,这样定义的函数f(x)的确满足对所有实数x,y,有f(x+y)=f(x)+f(y)。
 
这个函数的确满足我们想要的性质,但我无法告诉是f(1)等于多少,f(e)等于多少,f(π)等于多少。
 
     有人会说,你用选择公理做出的东西太奇怪,难道不用选择公理做不出这种不连续的例子吗?
 
      似乎下面的文字会让有的人更崩溃的。
 
 
      回忆一下实变函数的课程内容(如果你学过的话,当然这是一门很变态的课)。我们曾经“构造”过不可测的集合,但如果你能回忆起每一个细节话,你会很失望,这样集合的构造,也用到了那个“无所不能”的选择公理。实际上数学界的大牛告诉我们,在ZF下是没有办法推出或者推翻不可测的集合是不是存在的。下面的东东,也能构成一个没有矛盾的体系(数理逻辑中叫“自洽”):
 
 
      "ZF体系" + "所有实数子集都可测"。
 
 
      刚才说的条件6,记得吗。不可测的函数是因为不可测集合存在才存在的。于是,在这个体系下,所有函数都可测了,于是满足柯西函数方程的函数在这个体系下就都连续了。
 
 
附: f(x)为可测实函数,若对任意实数x,y,有f(x+y)=f(x)+f(y),则f(x)=f(1)x为线性函数。
证明:令g(x)=f(x)−xf(1),则对任意实数x,y,有g(x+y)=g(x)+g(y)。现在证g(x)=0。
易见对任何有理数q有f(q)=qf(1),于是g(q)=0。
令A={x : g(x)>0},B={x : g(x)<0},则A,B都可测。
注意A=−B,于是A,B有相同测度,即m(A)=m(B)。
 
若m(A)=m(B)>0,由这里的证明有,A−B=A+A包含一区间(实变经典定理,正测度集合代数和包含区间),于是包含一有理数,
取s∈A,t∈B,满足s−t=r为一有理数,则有
0=g(r)=g(s−t)=g(s)−g(t)>0,矛盾。
 
于是只能m(A)=m(B)=0,得到L = {x : g(x)=0} 为零测度集的余集。
若有实数a,使得g(a)>0,观察集合:
C = {x : g(x−a)=0} = {x : g(x)=g(a)}
中间集合表达式,说明C=a+L是一个零测度集的余集。
右边的集合表达式,因为g(a)>0,说明C是A的子集,是一个零测集。
矛盾
若有g(a)<0,则g(-a)>0,亦有矛盾
于是g(x)=0