2022年8月

15个数论难题,解决任意一个都能让你称为顶级大佬

关注 哆嗒数学网 每天获得更多数学趣文

哆嗒数学网
这里是数学爱好者之间分享数学经验、数学心得的数学文化家园。欢迎一切对数学具有浓厚兴趣或疑问的人们。在这里,你不必担心成为绝望的孤岛独思者。这里有千千万万的同伴,陪你一同在数学海洋里畅游。
公众号

 

 

下面的问题都是世界难题。如果你能解决其中任何一个都能在数学界斩获一个大奖。下文中,符号x^y 表示x的y次方。

 

 

 

1、哥德巴赫猜想猜想:每个不小于6的偶数,都可表示为两个奇质数之和。

 

2、考兰兹猜想,也叫3x+1猜想。给定一个正整数初始值n,如果n是偶数,则将其除以2,如果是奇数,就计算3n+1。这样会得到一个新的正整数。照着这样的操作一直进行下去,会得到一个正整数序列。考兰兹猜想说,无论给定怎么样的初始值。这个序列最终会进入4,2,1,4,2,1......这样的循环。

 

3、勒让德猜想:任意两个相邻完全平方数之间,都存在至少一个质数。即,对任意正整数n,存在质数p,满足n^2 < p < (n+1)^2

 

4、孪生质数猜想:存在无限多个质数p,使得p+2也是质数。

 

5、梅森质数猜想:形如 2^n - 1 的正整数中,有无穷多个质数。这个猜想大约在1639年提出,已经经过380多年了。

 

6、n^2+1猜想:存在无穷多个自然数n,使得n^2+1 是质数。

 

7、费马数猜想:数列F(n) = 2^(2^n)+1 ,n = 0,1,2,3,4,... 其中的自然数称为费马数。证明费马数中只有有限多个质数。当n = 0,1,2,3,4时,费马数F(n)是质数;1732年欧拉发现F(5)是合数. 此后没有再发现其它费马数是质数.。

 

8、奇完美数猜想:是否存在是奇数的完美数。一个正整数是完美数是指,它的所有真因数(非它自身的因数)之和等于它本身的自然数。比如6的因数是1,2,3而1+2+3正好等于6。

 

9、完美长方体猜想:是否存在一个完美长方体。完美长方体是指这个长方体的长、宽、高以及其所有的面对角线和体对角线都是正整数。相当于寻找三个正整数a,b,c,使得 a^2+b^2 , a^2+c^2, b^2+c^2, a^2+b^2+c^2 这四个数的平方根都是整数。

 

10、黎曼假设:该问题提出于1859年,即讨论黎曼ζ函数的零点分布情况. 数论中有一些与之等价的命题.

 

11、欧拉常数是有理数还是无理数?其中的定义是 1 + 1/2 + 1/3 + ... + 1/n - ln n 在n→∞时的极限。

 

12、对于黎曼ζ函数,当k为正奇数时,ζ(k)是否为超越数。你可以用简单的高数知识证明,k为正偶数时,ζ(k)是关于π的有理系数多项式,所以是超越数。

 

13、埃尔德倒数和猜想。如果A是一个正整数的无穷子集,A中所有数的倒数和发散,那么A包含任意长度的等差数列。格林和陶哲轩合作证明了A为质数集合的特殊情况,这个成果帮助后者得到菲尔兹奖。

 

14、n≥5时,拉姆齐数R(n,n)的值是多少。现在已知的是R(1,1) = 1 , R(2,2) = 2 , R(3,3) = 6, R(4,4) = 18 , n≥5的任何一个数都没有结果。哪怕知道R(5,5) 是43到48这6个数中的其中一个,也无法把它验证出来。

 

15、华林问题各种值的确定。对于正整数m,n , 如果任何一个正整数都能写成n个非负整数m次方之和,而且n还是满足这个条件的最小的,我们就说g(m)=n。比如四平方和定理:每个正整数均可表示为4个(非负)整数的平方和。而7不能表示为3个整数的平方和,相当于说g(2)=4。对于正整数m,n , 如果除了有限个情形外任何一个正整数都能写成n个非负整数m次方之和,而且n还是满足这个条件的最小的,我们就说G(m)=n。现在知道的很少的几种情况是 g(2) = 4 ,  g(3) = 9 , g(4)=19 ,  g(5)=37 , g(6) = 73, G(2) = 4,  G(4) = 16,还没有找到确定所有的g(m), G(m)的一般方法。有个具体的猜想是g(m) = 2^m + [(3/2)^m] - 2 , 这里方括号表示取整。

 

关注 哆嗒数学网 每天获得更多数学趣文

化圆为方:数学家从没停止研究,只是不是原来的样子

本文编译自量子杂志网站

原文作者:Steve Nadis

编译作者:Math001

 

 

关注 哆嗒数学网 每天获得更多数学趣文

大约公元前450年,安那克萨哥拉斯终于有了静下来思考的时间。这位哲学家兼数学家的古希腊人声称太阳不是神,而是和罗奔尼撒半岛一样大的炽热岩石。安那克萨哥拉斯因此被打入大牢。作为信奉“理性统治世界”的哲学家代表,他在狱中着手思考解决一个数学问题。这就是著名的化圆为方问题:用圆规和无刻度的尺子作一个和已知圆一样大的正方形。

 

安那克萨哥拉斯的本来的那个问题其实在1882年就解决了。德国数学家林德曼用一套经典方法证明了尺规作图化圆为方是不可能的。他证明了圆周率π是超越数。但是尺规作图是不可能做出超越数的线段长度的,所以证明了问题的不可能性。

 

问题并没有因此终结,意外的是,数学家们还在这个问题上工作着。1925年数学家塔尔斯基唤醒了这个问题,他修改了原始问题的规则:如果把圆分成完全相同的有限多块,这些小块是否能重新拼成一个面积相同的圆呢?这样的问题有个统一的名字,叫做等体分解。

 

 

 

 

图片

 

 

 

 

 

换句话说,如果两个物体可以分解成大小和形状完全同部分,那么这两个物体就是同等体分解的。更精确的说,如果两个物体能分解成有限多个部分,每个部分完全一致,那么就说这两个物体就是同等体分解的。

 

 

 

1964年的一篇论文让塔尔斯基版本的化圆为方问题有了第一次实质性的进展。论文的结论是,用剪刀是无法完成化圆为方的等体分解。着意为着,如果要解决这个问题,可能需要把圆分解成更复杂的分型:一种可能布满小洞或者无限锯齿的形状。

 

 

1990年,数学家拉茨科维奇(Miklós Laczkovich)响亮的从正面解决了塔尔斯基的问题:塔尔斯基的化圆为方问题是成立的。

 

 

 

拉茨科维奇证明的是,用一种复杂和非常规的图形对圆进行分解,用不超过10的50次方个小块进行移动(连旋转都不用),这些小块就能重新拼成正方形。

 

 

但是拉茨科维奇不直接操作几何图形而得到这个结果的。实际上,他把原本的几何问题转化成了图论问题。用两个顶点集合,一个集合对应圆,一个几何对应正方形,然后之间建立两个顶点集合之间的一一对应关系,从而完成的证明。

 

有数学家认为,拉茨科维奇的结果让人“瞠目结舌”,拉茨科维奇的向大家展示了如何“把一个圆的掰成直的”。

 

 

拉茨科维奇的证明还有一个瑕疵。这个证明是存在性证明,在数学界被称为“非构造性证明”。他证明了事情可以办到,但没有给出分解的具体办法来说明如何办到。更让人不爽的是,分解的小块是“不可测的”,这意味着这些小块的面积不存在。

 

图片

 

几十年后的2016年,格拉博斯基(Łukasz Grabowski), 玛斯(Andras Máthé) 以及皮胡尔科(Oleg Pikhurko)共同撰写的论文让这个问题又有了重大进展。和拉茨科维奇的论文不同,证明几乎是构造性的,就是说分解的每一个小块都有明确的描述。但还是有一个瑕疵:把圆分解成的小块并没有填充满正方形的全部,还有很小很小的一部分没有填充。这没有填充的部分面积是零,数学家称为“零测度集”。

 

尽管还是没做到完全覆盖,但也是这个问题的重大进步——除了一个零测度集合,我们按塔尔斯基的规则成功的用构造性的方法化圆为方。

 

 

一年后,加州大学的马克斯( Andrew Marks)和多伦多大学的安格(Spencer Unger)在这个问题上有取得重大进展,他们第一次用完全构造性的方法证明了塔尔斯基版本的化圆为方——而且是完整的拼成,没有任何多余部分。论文完整描述了如果把圆分成小块,然后重新拼成一个等体积的正方形,不再有多余的零测度集合。

 

 

这一次分成的小块更多,需要大约10的200次方块,每一个小块的结构依然很复杂。论文作者认为,这是一个缺陷,因为这些小块要站在数学家的立场才能理解,很难用形象的方式展示出来。

 

 

这就留下了改进的空间,用更少数量的小块,或者更简单的形状的小块。数学家并没有停止探索,他们已经用计算机做了一个实验,据说22块就可以,但目前还没有给出这个的证明。

 

关注 哆嗒数学网 每天获得更多数学趣文